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SUMMARY 
In this work a method is given for finding the position of ring 

singularities in a three-dimensional potential field having axial 
symmetry, by consideration of the very much easier case of a 
similar two-dimensional potential function. It- is seen that 
the traces of these ring singularities on a plane through the axis 
of symmetry occur at points corresponding to those of the 
singularities existing in the two-dimensional plane when the 
axial velocity potential functions are the same. It is thought 
that this might be of value in the plotting of stream surfaces. 

INTRODUCTION 
When an arbitrary velocity potential function for perfect fluid flow is 

assumed, it is essential that the singularities of this function or its 
derivatives should be excluded from the fluid region that it is hoped may 
be reproduced physically. In the following work a method has been 
developed for obtaining the positions of the singularities in velocities, 
or velocity potential, by consideration of similar velocity or velocity 
potential distributions in the two-dimensional case. It will be supposed 
that the velocity potential function, or one of its derivatives, is known 
along the axis of symmetry, and it can be shown that this defines the 
velocity potential function throughout all space. 

First it will be shown that a relationship exists between the two- 
dimensional case and the three-dimensional case with axial symmetry. 

The procedure for then obtaining the ring singularities when I$ = f ( x )  
along the axis in three dimensions, with symmetry assumed, will be to 
consider the position of the singularities existing when 4 = f(x) along 
the x-axis in two dimensions. 

SIMILARITY OF CERTAIN TWO-DIMENSIONAL AND THREE-DIMENSIONAL 

The axis of symmetry will be taken as the x-axis in both the two- and 
three-dimensional cases. 4 denotes a velocity potential function in both 
cases, and the value of 4 along the axis of symmetry is supposed to be 2f(x). 

If y is defined as the coordinate measured perpendisular to the x-axis 
in two dimensions and z = x + iy, it follows that f(z) = f(z), and so 

VELOCITY POTENTIAL FUNCTIONS 

4 = f(4 +A3 (1) 
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at any point of the two-dimensional field, with the usual notation for 
conjugate complex quantities. Here, f(z) is the analytic function of z 
that takes the real value f(x) when y = 0. 

For the three-dimensional case with axial symmetry, the definition of 
the axial velocity potential as 2f(x) determines the potential function 
throughout the whole of space except along a number of lines. It may be 
shown (Whittaker & Watson 1927, p. 388) that 

at every point of the field at which the integral is analytic, where r is defined 
as the coordinate measured perpendicular to the x-axis in three dimensions. 
Putting h = cose in (2), one obtains 

There is clearly great similarity between equations (1) and (3). 
Suppose that f(z) has a singularity at z = cc +is ; then A = 1 gives the 

smallest value of T for which hr = ,$, and when h = 1, f(x+irh) has a 
singularity at x = u, r = ,$. 

When no finite limitf(ct+i/3) exists, the integral (3) may not converge 
and then 4 will be infinite at the singularity x = a, r = /3; note that the 
traces of this singularity are at the same points on a plane through the axis 
of symmetry as in the two-dimensional case. If however the integral (3) 
converges for the range X2 < 1 the velocity potential still exists. The 
condition that the integral (3) converges at h = 1 is that 

( 1 - + iB) lim 
1+1 d(1 -A2) 

is finite. Even in this case, however, it is easily seen that higher derivatives 
of 4 must become infinite, so that the point is still a singularity. 

Taking the velocity in the direction of the x-axis to be u (= -+/ax), 
the preceding work may be repeated withf(x) replaced by - - f ’ (x ) .  Hence the 
singularities in the velocity distributions in the field follow a similar pattern. 

Some examples given below illustrate this, 

Example 1 
Suppose the axial velocity is given as (1 + x ~ ) - ~  = - 2j’(x), say. 
Then, in two dimensions, 

This becomes infinite for n > 0 when z2 + 1 = 0, or y = 5 1, x = 0. 
In  three dimensions 

f’(ct+i,$h) = -$[1 +ct+i/3h)2]T”. 

- (1 - h)1’2 In  this case 

for n - 3  > 0 when u =; 0, ,$ = 1. 

lim =co 
A + l  2[1 +(M+i,$h)2]-n 
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Hence a ring singularity exists symmetrically about the x-axis, of 
radius Y = 1 in the plane x = 0, and the value of u is not finite at points on 
this ring provided n - 4  > 0. For the special case when n = 1 ,  the 
integral ( 3 )  becomes 

1 2 1  dA 1 dA ;[I, [(x+irA)2+1]2/(1-A2) + So [(x-irA)2+1]1/(1-A2) 9 

and this can be found explicitly as 
1 

which clearly has a singularity at x = 0, r2 = 1 .  
continuous across the whole ' branch line' x = 0, r > 1 .  

It is, in addition, dis- 

Example 2 
Suppose the axial velocity is given as ( 1  + en)--n = - 2f'(x),  say. 
Then, in two dimensions, u = +{( 1 + ez)-n + (1 + .")-"} ; this becomes 

infinite for n > 0 when eZ+ 1 = 0, or x = 0, y = (2K+ l ) ~ ,  where K is 
an integer. 

For three dimensions, f'(u + $A) = - + ( 1 +  eru+isL)-n and 
- 1( - A)l/2 

lim =a3 2 [ 1 +  eiYS-@n]n 

for n-4 > 0 when u = 0 and p = ( 2 K + l ) ~ .  
Hence ring singularities exist symmetrically about the x-axis, of radii 

r = T ,  3n-, 57r, ... (2K+ l ) ~ ,  in the plane x = 0. 
A variation of this axial velocity has been used by Szczeniowski (1943) 

for designing wind tunnel contractions; but he does not appear to know 
where these singularities occur. 

Example 3 
Suppose the axial velocity is given as 2(1 +x4)-l = -2f'(x),  say. 
In  two dimensions, u = ( 1  + x4)-l + ( 1  + 2 - l ,  which ceases to be analytic 

when x 4 +  1 = 0, that is, when x = exp{$i(ZK+ l ) ~ ) ,  where K is an integer 
and x + i y  = (i- 1 i - i ) / l i Z .  

For the three-dimensional case, 
f'(u + iph) = - ( 1  + (u + ilgh)4}--1, 

and for u = L- 1 /42 ,  p2 = + 
- 4( 1 -A)'/' 
4 + ( 1  L - ~ A ) ~  } = m .  

Hence for this axial velocity there exist two ring singularities, given by 
x = i- 1 /42 ,  r2 = +, at which the value of u is not bounded. 

CONCLUSIONS 
The procedure of defining an axial velocity distribution in three 

dimensions has been used by several authors in the design of nozzles and 
wind tunnel contractions. Prior to this work, it has been necessary to 
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calculate the stream functions (or potential functions) and then deduce 
the regions of the fluid in which the velocity components tend to infinity. 
Since these functions have often been in series form this has not always 
been easy and has usually been tedious. It is suggested here that, following 
the adoption of the axial velocity potential function, the position of the 
singularities in the two-dimensional (and hence of the three-dimensional) 
field should be found, as this will give a good indication of the regions where 
sharp rises in velocity along stream surfaces may occur. If, then, it is of 
importance to eliminate such rises, the plotting of a few stream surfaces in 
the region of the singularities alone might prevent a considerable wastage 
of time. 

A point of interest is the reduction in degree of the singularities occurring 
in the three-dimensional case. For example, when the axial velocity is 
(1 + x ~ ) - ~ ,  then on the plane x = 0 the value of the u(0,y)  in two dimensions 
is (1 - Y ~ ) - ~  whilst it can be shown that the value of u(0,r)  in three 
dimensions is 

a{( 1 - P - 3 ’ 2  + (1 - r2) -1 /2} .  

The ‘ order of infinity ’ has therefore dropped from 2 to 8 ; and a reduction 
in order of 4 (compare example 1) seems general when going from three 
to two dimensions. 

Whilst the preceding work was done mainly for the consideration of 
perfect fluid flow, it is quite general and could be applied to other problems 
with axial symmetry. 
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